翻訳と辞書 |
Formal moduli : ウィキペディア英語版 | Formal moduli In mathematics, formal moduli are an aspect of the theory of moduli spaces (of algebraic varieties or vector bundles, for example), closely linked to deformation theory and formal geometry. Roughly speaking, deformation theory can provide the Taylor polynomial level of information about deformations, while formal moduli theory can assemble consistent Taylor polynomials to make a formal power series theory. The step to moduli spaces, properly speaking, is an ''algebraization'' question, and has been largely put on a firm basis by Artin's approximation theorem. A formal universal deformation is by definition a formal scheme over a complete local ring, with special fiber the scheme over a field being studied, and with a universal property amongst such set-ups. The local ring in question is then the carrier of the formal moduli. ==References==
*
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Formal moduli」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|